BANK OF BARODA (QUANTITATIVE APTITUDE) MEMORY BASED PAPER -SOLUTIONS

Directions (51-55) :

Males in company $=\frac{86}{79+86} \times 1650=860$
Females in company $=1650-860=790$
Males in Product development department = 198
Employees in Sales and marketing department $=\frac{18}{100} \times 1650=$ 297
Males in Sales and marketing department $=\frac{5}{9} \times 297=165$
Females in Sales and marketing department = 132
Males in finance department $=77$
Females in Finance department $=\frac{5}{7} \times 77=55$
Females in Product development department $=165$
Males in HR department $=77 \times 2=154$
Males in R\&D and reinvestment department $=860$ $(198+165+77+154)=266$
Females in R\&D and reinvestment department $\frac{19}{14} \times 266=361$
Females in HR department $=790-(132+55+165+361)=77$
51. (e) required difference $=266-165=101$
52. (b) required percentage $=\frac{361}{790} \times 100 \approx 45.7 \%$
53. (b) required percentage $=\frac{165-55}{165} \times 100=66 \frac{2}{3} \%$
54. (b) no. of males in Product development, Sales and marketing and HR departments $=198+165+154=517$
No. of females in Product development , finance and R\&D and reinvestment department $=361+55+165=581$ Difference $=64$
55. (b) females shifted from Sales and marketing

Department $\frac{5}{12} \times 132=55$
Females in HR department $=77+55=132$
Males in HR department $=154$
Required ratio=
$\frac{154}{132}=1.17$
56. (d); Total No. of students in IT $=\frac{21}{100} \times 7800=1638$

No. of boys in IT $=1638-\left(\frac{28}{100} \times 4550\right)=364$
Required percentage $=\frac{364}{1638} \times 100=22.22 \%$
57. (c); Boys in IT=364

Boys in mechanical=949, total boys in IT and Mechanical together=1313
58. (b); No. of girls in computer science and Electronics and communication together $=1365$
No. of boys in Civil and computer science together=1573 Required percentage $=\frac{1365}{1573} \times 100 \approx 87 \%$
59. (b);

Required \% age $=\frac{364}{7800} \times 100=4.66 \approx 4.67 \%$
60. (e); No. of girls in computer science $=\frac{14}{100} \times 4550=637$

No. of boys in IT $=\left(\frac{21}{100} \times 7800\right)-\left(\frac{28}{100} \times 4550\right)=364$
Ratio $=\frac{637}{364}=7: 4$
61. (a) ; $+(8 \times 6)-1,+(8 \times 7)-1,+(8 \times 8)-1,+(8 \times 9)-$ $1,+(8 \times 10)-1$
$284+(8 \times 9)-1=284+71$
$=355$
62. (d) $;+(0)^{2},-5^{2},+10^{2},-15^{2},+20^{2},-25^{2} \ldots$ \qquad
$1197-25^{2}=1197-625$
$=572$
63. (d) $;+11^{2},+9^{2},+7^{2},+5^{2},+3^{2}, \ldots .$.
$290+5^{2}=290+25=315$
64. (e); $\times 1+2^{3}, \times 2+3^{3}, \times 3+4^{3}, \times 4+5^{3}, \times 5+6^{3}, \times 6+$ 7^{3}
$1473 \times 5+6^{3}==7581$
65. (e); $-80,+10,-40,+20 \ldots .$.
$447-20=427$
66. $(a) ;(13.68)^{2}-(4.78)^{2}+(8.28)^{3}-(5.24)^{3}$
$=187-22+567-143$
$=165+424$
$=589 \approx 600$
67. (c); $32 \div 4 \div 10+29=$?
? $=8 \div 10+29$
? $=29.8 \approx 30$
68. (e); $\sqrt{?}=(1248.28+51.7) \div 99.9-7.98$
$\sqrt{?}=(1300 \div 100)-8$
$\sqrt{?}=5$
$?=25$
69. (b) $; 111.1+25.8+153.5$ $=290.4$
70. (e) $; 182 \times 51-6889=(?)^{2}+1369$
$9282-6889=(?)^{2}+1369$
$2393-1369=(?)^{2}$
$(?)^{2}=1024$
? $=32$
71. (b); $2040+2300+2400+2200+2090+2120=$ 13150
72. (d); $\frac{2250-2180}{2180} \times 100=3.21 \%$
73. (c); Number of students in college P in $2008=2540$.

Total number of students in P in all years $=13780$.
Required percentage $=\frac{2540}{13780} \times 100=18 \%$ (approx.)
74. (a); Required ratio $=(2250+2480):(2260+2440)$
$=4730: 4700$
$=473: 470$
75. (e); $\frac{(2500+2250+2450+2150+2020+2300)}{6}=\frac{13670}{6}=2278$
76. (a); Average $=\frac{1}{6} \times[150+300+300+500+650+$ 800] $=450$
77. (e); $650: 700: 550$
= 13: 14: 11
78. (c); Req $\%=\frac{250-200}{200} \times 100=25 \%$
79. (d); $\frac{800+700+660}{3}=720$
80. (a); $300: 200: 350=6: 4: 7$
81. (b);Let Required men $=x$
$\frac{60 \times 60}{\frac{3}{4}}=\frac{(60-x) \times 30}{\frac{1}{4}}$
$40=60-x$
$x=20$
82. (a); Let the two digit number $=10 x+y$
$\therefore 10 x+y-x-10 y=1.8 \times 10$
$9 x-9 y=18$
$x-y=2$
83. (d); A $\rightarrow 3 \times 700+3 \times 500+6 \times 620$

B $\rightarrow 600 \times 12$
$\therefore \mathrm{A} \rightarrow 7320=366=183$
B $\rightarrow 7200=360=180$
\therefore Ratio of their investment $=183: 180$
\therefore Amount, A receive $=\frac{183}{363} \times 726$
$=183 \times 2=366$ Rs.
84. (b); Let initial amount $=100$

Now, total amount $=100+14+\frac{45}{100} \times 114$
$=165.3$
$\therefore 165.3 \rightarrow 16530$
$1 \rightarrow \frac{16530}{165.3}$
$\therefore 100 \rightarrow 100 \times 100=10,000$ Rs.
85. (c); С.P. S.P.

80x 90x
$(80 x+10) \quad(90 x+2)$
$\therefore \frac{105}{100}(80 x+10)=90 x+2$
$8400 x+1050=9000 x+200$
$600 x=850$
$x=\frac{85}{60}$
\therefore Required C.P. $=\frac{85}{60} \times \mathbf{8 0}$
$=\frac{4 \times 85}{3}$
$=\frac{340}{3}=113 \frac{1}{3} \mathrm{Rs}$.
86. (c); Krishna $\rightarrow 3 x \times 2 t \Rightarrow 6 x t$

Nandan $\rightarrow x \times t \Rightarrow x t$
Ratio of their profits $=6: 1$
\therefore Required amount $=\frac{4000}{1} \times 7=28000$ Rs.
87. (e); Let total population $=100$
\therefore After first year $=100+15=115$
After second year $=115-23=92$
After third year $=92+4.6=96.6$
$\therefore 100 \rightarrow 32000$
$96.6 \rightarrow \frac{32000}{100} \times 96.6$
$=320 \times 96.6=30912$
88. (c); Let students appeared from school $\mathrm{A}=100$
\therefore Qualified students from school $\mathrm{A}=60$
Now, student appeared from school B $=130$
And Qualified student from school $B=60+36=96$
\therefore Required $\%=\frac{96}{130} \times 100=\frac{960}{13}=73 \frac{11}{13} \%$
89. (b); Let original expenditure of mess for students $=x$
$\therefore(x-1) \times 40-36 x=32$
$40 x-40-36 x=32$
$4 x=72$
$x=18$
\therefore Required expenditure $=18 \times 36=648$ Rs.
90. (c); Let amount invested at 20% per annum $=x$ Rs.

By mixture and allegation method

\therefore Total amount invested $=\frac{12000}{3} \times 5=20,000$ Rs.
91. (d); Let required no. of days $=x$

$$
\begin{aligned}
& \frac{(x-5)}{10}+\frac{(x-3)}{12}+\frac{x}{15}=1 \\
& \frac{6 x-30+5 x-15+4 x}{60}=1
\end{aligned}
$$

$$
15 x-45=60
$$

$$
15 x=105
$$

$x=7$ Days
92. (b); Reqd. Probability $=\frac{2 c_{1}+1 c_{1}}{12 c_{1}}=\frac{3}{12}=\frac{1}{4}$
93. (c); Reqd. probability $=\frac{1}{12 c_{2}}\left(4 c_{1} \times 8 c_{1}+4 c_{2}\right)=\frac{38}{12 \times 11} \times$ $2=\frac{19}{33}$
94. (d); Reqd. probability $=\frac{\left(4 c_{2} \times 5 c_{1}\right)}{12 c_{3}}=\frac{3}{22}$
95. (d);

	C.P.	S.P.		
Pankaj	70	$100_{\times 5}$	350	500
Chandan	100	$125_{\times 4}$	400	500

Difference of their profit $=\mathbf{1 5 0} \mathbf{- 1 0 0}=\mathbf{5 0}$
$\therefore 50 \rightarrow 135$
$500 \rightarrow \frac{135}{50} \times 500=1350$ Rs.
96. Ans.(c)

Sol. After dividing, we get $x^{2}+x-12=0, x=-4,3$
After dividing we get, $=y^{2}+7 y+12=0, y=-4,-3$
$x \geq y$
97. Ans.(a)

Sol. $2 x^{2}-41 x+20=0, x=\frac{1}{2}, 20$
$-2 y^{2}-19 y-35=0, x=\frac{-5}{2},-7$
98. (a)

Sol. $y=-\frac{59}{5}, x=\frac{-57}{5}$
99. (b);

$$
\begin{aligned}
& x=-\frac{21}{6},-\frac{10}{6} \\
& \quad \begin{array}{l}
-\frac{7}{2},-\frac{5}{3}
\end{array} \\
& y>x
\end{aligned}
$$

100. (c); I. $2 x^{2}-4 x-\sqrt{13} x+2 \sqrt{13}=0$
$2 x(x-2)-\sqrt{13}(x-2)=0$
$(x-2)(2 x-\sqrt{13})=0$
$x=2, \frac{\sqrt{13}}{2}$
II. $10 y^{2}-18 y-5 \sqrt{13} y+9 \sqrt{13}=0$
$2 y(5 y-9)-\sqrt{13}(5 y-9)=0$
$(5 y-9)(2 y-\sqrt{13})=0$
$y=\frac{9}{5}, \frac{\sqrt{13}}{2}$
$x \geq y$
